МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и молодежной политики Свердловской области Муниципальное казенное учреждение "Управление образования городского округа Заречный" МБОУ ГО Заречный "СОШ №4" РАССМОТРЕНО СОГЛАСОВАНО УТВЕРЖДЕНО рук.метод. объединения зам. Директора по УВР директор Лобова Е.В. Протокол №1 от «29» августа 2023 г. Ёлкина Н.Н. Гришина В.С. от «29» августа 2023 г. Приказ №94 ОД/р от «30» августа 2023 г. АДАПТИРОВАННАЯ РАБОЧАЯ ПРОГРАММА учебного курса «Геометрия» для 7-9 специальных (коррекционных) классов для детей с задержкой психического развития (реализация ФГОС ООО по АООП ООО) г. Заречный, 2023год ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Примерная рабочая программа по математике для обучающихся с задержкой психического развития (далее – ЗПР) на уровне основного общего образования подготовлена на основе Федерального государственного образовательного стандарта основного общего образования (Приказ Минпросвещения России от 31.05.2021 г. № 287, зарегистрирован Министерством юстиции Российской Федерации 05.07.2021 г., рег. номер 64101) (далее – ФГОС ООО), Примерной адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития (далее – ПАООП ООО ЗПР), Примерной рабочей программы основного общего образования по предмету «Математика», Примерной программы воспитания, с учетом распределенных по классам проверяемых требований к результатам освоения Адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. Общая характеристика учебного предмета «Математика» Учебный предмет «Математика» входит в предметную область «Математика и информатика». Он способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни обучающихся с ЗПР. Учебный предмет развивает мышление, пространственное воображение, функциональную грамотность, умения воспринимать и критически анализировать информацию, представленную в различных формах. Обучение математике даѐт возможность развивать у обучающихся с ЗПР точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека. Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Программа отражает содержание обучения предмету «Математика» с учетом особых образовательных потребностей обучающихся с ЗПР. Овладение учебным предметом «Математика» представляет определенную сложность для учащихся с ЗПР. У обучающихся с ЗПР наиболее выражены отставания в развитии словеснологических форм мышления, поэтому абстрактные и отвлеченные категории им труднодоступны. В тоже время при специальном обучении обучающиеся могут выполнять задания по алгоритму. Они восприимчивы к помощи, могут выполнить перенос на аналогичное задание усвоенного способа решения. Снижение развития мыслительных операций и замедленное становление логических действий приводят к недостаточной осмысленности совершаемых учебных действий. У обучающихся затруднены счетные вычисления, производимые в уме. В письменных вычислениях они могут пропускать один из промежуточных шагов. При работе с числовыми выражениями, вычислением их значения могут не удерживать правильный порядок действий. При упрощении, преобразовании выражений учащиеся с ЗПР не могут самостоятельно принять решение о последовательности выполнения действий. Конкретность мышления осложняет усвоения навыка решения уравнений, неравенств, системы уравнений. Им малодоступно совершение обратимых операций. Низкий уровень развития логических операций, недостаточная обобщенность мышления затрудняют изучение темы «Функции»: при определении функциональной зависимости, при описании графической ситуации, используя геометрический, алгебраический, функциональный языки. Нередко учащиеся не видят разницы между областью определения функции и областью значений. Решение задач сопряжено с трудностями оформления краткой записи, проведения анализа условия задачи, выделения существенного. Обучающиеся с ЗПР затрудняются сделать умозаключение от общего к частному, нередко выбирают нерациональные способы решения, иногда ограничиваются манипуляциями с числами. При изучении геометрического материала обучающиеся с ЗПР сталкиваются с трудностью делать логические выводы, строить последовательные рассуждения. Непрочные знания основных теорем геометрии приводит к ошибкам в решении геометрических задач. Обучающиеся могут подменить формулу, неправильно применить теорему. К серьезным ошибкам в решении задач приводят недостаточно развитые пространственные представления. Им сложно выполнить чертеж к условию, в письменных работах они не могут привести объяснение к чертежу. Точность запоминания и воспроизведения учебного материала снижены по причине слабости мнестической деятельности, сужения объема памяти. Обучающимся с ЗПР требуется больше времени на закрепление материала, актуализация знаний по опоре при воспроизведении. Для преодоления трудностей в изучении учебного предмета «Математика» необходима адаптация объема и характера учебного материала к познавательным возможностям учащихся с ЗПР. Следует учебный материал преподносить небольшими порциями, усложняя его постепенно, изыскивать способы адаптации трудных заданий, некоторые темы давать как ознакомительные; исключать отдельные трудные доказательства; теоретический материал рекомендуется изучать в процессе практической деятельности по решению задач. Органическое единство практической и умственной деятельности учащихся на уроках математики способствуют прочному и сознательному усвоению базисных математических знаний и умений. Цели и задачи изучения учебного предмета «Математика» Приоритетными целями обучения математике в 5–9 классах являются: формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся с ЗПР; подведение обучающихся с ЗПР на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества; развитие интеллектуальных и творческих способностей обучающихся с ЗПР, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики; формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практикоориентированных задач, интерпретировать и оценивать полученные результаты. Достижение этих целей обеспечивается решением следующих задач: формировать у обучающихся с ЗПР навыки учебно-познавательной деятельности: планирование работы, поиск рациональных путей ее выполнения, осуществления самоконтроля; способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, пространственных представлений, способности к преодолению трудностей; формировать ключевые компетенции учащихся в рамках предметной области «Математика и информатика»; развивать понятийное мышления обучающихся с ЗПР; осуществлять коррекцию познавательных процессов обучающихся с ЗПР, необходимых для освоения программного материала по учебному предмету; предусматривать возможность компенсации образовательных дефицитов в освоении предшествующего программного материала у обучающихся с ЗПР и недостатков в их математическом развитии; сформировать устойчивый интерес учащихся к предмету; выявлять и развивать математические и творческие способности. Основные линии содержания курса математики в 5–9 классах: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Функции», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное в Федеральном государственном образовательном стандарте основного общего образования требование «уметь оперировать понятиями: определение, аксиома, теорема, доказательство; умение распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне основного общего образования. Содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределѐнным по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно, чтобы овладение математическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включались в общую систему математических представлений обучающихся с ЗПР, расширяя и углубляя еѐ, образуя прочные множественные связи. Общие цели изучения учебного предмета «Математика» представлены в Примерной рабочей программе основного общего образования. Особенности отбора и адаптации учебного материала по математике Обучение учебному предмету «Математика» строится на создании оптимальных условий для усвоения программного материала обучающимися с ЗПР. Большое внимание уделяется отбору учебного материала в соответствии с принципом доступности при сохранении общего базового уровня, который должен по содержанию и объему быть адаптированным для обучающихся с ЗПР в соответствии с их особыми образовательными потребностями. Следует облегчить овладение материалом обучающимися с ЗПР посредством его детального объяснения с систематическим повтором, многократной тренировки в применении знаний, используя приемы актуализации (визуальная опора, памятка). Примерная программа предусматривает внесение некоторых изменений: уменьшение объема теоретических сведений, вынесение отдельных тем или целых разделов в материалы для обзорного, ознакомительного изучения. Изменения программы в 7–9 классах Геометрия Следует основное внимание уделить практической направленности курса, исключив и упростив наиболее сложный для восприятия теоретический материал. На уроках геометрии необходимо максимально использовать наглядные средства обучения, больше проводить практических работ с учащимися, решать задачи. Строить решение задач при постоянном обращении к наглядности – рисункам и чертежам. Ознакомительно дать темы: «Теоремы и доказательство. Аксиомы», «Доказательство от противного», «Существование и единственность перпендикуляра к прямой», «Метод геометрических мест», «Метод удвоения медианы», «Теорема Фалеса и теорема о пропорциональных отрезках», «Центр масс треугольника», «Изменение тригонометрических функций при возрастании угла», «Формулы для радиусов вписанных и описанных окружностей правильных многоугольников», «Уравнение прямой», «Движение», «Свойства движения», «Теорема о произведении отрезков хорд, теоремы о произведении отрезков секущих, теорема о квадрате касательной». Следует уменьшить количество часов на изучение тем: «Симметричные фигуры. Основные свойства осевой симметрии», «Центральная симметрия», «Параллельный перенос», «Поворот», «Преобразование подобия. Подобие соответственных элементов», «Основные задачи на построение с помощью циркуля и линейки», «Декартовы координаты на плоскости», «Решение треугольников», «Подобие фигур». Высвободившиеся часы использовать на решение задач и повторение. Примерная программа предоставляет автору рабочей программы свободу в распределении материала по четвертям (триместрам). Распределение времени на изучение тем в течение учебного года самостоятельно определяется образовательной организацией и зависит от особенностей группы обучающихся с ЗПР и их особых образовательных потребностей. Примерные виды деятельности обучающихся с ЗПР, обусловленные особыми образовательными потребностями и обеспечивающие осмысленное освоение содержании образования по предмету «Математика» Содержание видов деятельности обучающихся с ЗПР определяется их особыми образовательными потребностями. Помимо широко используемых в ООП ООО общих для всех обучающихся видов деятельности следует усилить виды деятельности специфичные для данной категории детей, обеспечивающие осмысленное освоение содержания образования по предмету: усиление предметно-практической деятельности с активизацией сенсорных систем; чередование видов деятельности, задействующих различные сенсорные системы; освоение материала с опорой на алгоритм; «пошаговость» в изучении материала; использование дополнительной визуальной опоры (схемы, шаблоны, опорные таблицы); речевой отчет о процессе и результате деятельности; выполнение специальных заданий, обеспечивающих коррекцию регуляции учебно-познавательной деятельности и контроль собственного результата. Примерная тематическая и терминологическая лексика соответствует ООП ООО. Для обучающихся с ЗПР существенным являются приемы работы с лексическим материалом по предмету. Проводится специальная работа по введению в активный словарь обучающихся соответствующей терминологии. Изучаемые термины вводятся на полисенсорной основе, обязательна визуальная поддержка, алгоритмы работы с определением, опорные схемы для актуализации терминологии. ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ». 7–9 КЛАССЫ Цели изучения учебного курса Общие цели изучения учебного курса «Геометрия» представлены в ПООП ООО. Они заключаются, прежде всего в том, что на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения «от противного», отличать свойства от признаков, формулировать обратные утверждения. В обучении умению рассуждать состоит важное воспитательное значение изучения геометрии, присущее именно отечественной математической школе. Второй целью изучения геометрии является использование еѐ как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе. Для этого учителю рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить обучающихся строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчѐркивать связи геометрии с другими предметами, мотивировать использовать определения геометрических фигур и понятий, демонстрировать применение полученных умений в физике и технике. Эти связи наиболее ярко видны в темах «Векторы», «Тригонометрические соотношения», «Метод координат» и «Теорема Пифагора». Место учебного курса в учебном плане Согласно учебному плану в 7–9 классах изучается учебный курс «Геометрия», который включает следующие основные разделы содержания: «Геометрические фигуры и их свойства», «Измерение геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения плоскости» и «Преобразования подобия». Учебный план предусматривает изучение геометрии на базовом уровне, исходя из не менее 68 учебных часов в учебном году, всего за три года обучения – не менее 204 часов. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА (ПО ГОДАМ ОБУЧЕНИЯ) 7 КЛАСС Начальные понятия геометрии. Точка, прямая, отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Ломаная, многоугольник. Параллельность и перпендикулярность прямых. Симметричные фигуры. Основные свойства осевой симметрии1. Примеры симметрии в окружающем мире. 1 Здесь и далее курсивом обозначены темы, изучение которых проводится в ознакомительном плане. Педагог самостоятельно определяет объем изучаемого материала. Основные построения с помощью циркуля и линейки. Треугольник. Высота, медиана, биссектриса, их свойства. Равнобедренный и равносторонний треугольники. Неравенство треугольника. Свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Свойства и признаки параллельных прямых. Сумма углов треугольника. Внешние углы треугольника. Прямоугольный треугольник. Свойство медианы прямоугольного треугольника, проведѐнной к гипотенузе. Признаки равенства прямоугольных треугольников. Прямоугольный треугольник с углом в 30 о. Неравенства в геометрии: неравенство треугольника, неравенство о длине ломаной, теорема о большем угле и большей стороне треугольника. Перпендикуляр и наклонная. Геометрическое место точек. Биссектриса угла и серединный перпендикуляр к отрезку как геометрические места точек. Окружность и круг, хорда и диаметр, их свойства. Взаимное расположение окружности и прямой. Касательная и секущая к окружности. Окружность, вписанная в угол. Вписанная и описанная окружности треугольника. 8 КЛАСС Четырѐхугольники. Параллелограмм, его признаки и свойства. Частные случаи параллелограммов (прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая трапеция, еѐ свойства и признаки. Прямоугольная трапеция. Метод удвоения медианы. Центральная симметрия. Теорема Фалеса и теорема о пропорциональных отрезках. Средние линии треугольника и трапеции. Центр масс треугольника. Подобие треугольников, коэффициент подобия. Признаки подобия треугольников. Применение подобия при решении практических задач. Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма, ромба и трапеции. Отношение площадей подобных фигур. Вычисление площадей треугольников и многоугольников на клетчатой бумаге. Теорема Пифагора. Применение теоремы Пифагора при решении практических задач. Синус, косинус, тангенс острого угла прямоугольного треугольника. Основное тригонометрическое тождество. Тригонометрические функции углов в 30о, 45о и 60о. Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и секущими. Вписанные и описанные четырѐхугольники. Взаимное расположение двух окружностей. Касание окружностей. Общие касательные к двум окружностям. 9 КЛАСС Синус, косинус, тангенс углов от 0о до 180о. Основное тригонометрическое тождество. Формулы приведения. Решение треугольников. Теорема косинусов и теорема синусов. Решение практических задач с использованием теоремы косинусов и теоремы синусов. Преобразование подобия. Подобие соответственных элементов. Теорема о произведении отрезков хорд, теоремы о произведении отрезков секущих, теорема о квадрате касательной. Вектор, длина (модуль) вектора, сонаправленные векторы, противоположно направленные векторы, коллинеарность векторов, равенство векторов, операции над векторами. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, применение для нахождения длин и углов. Декартовы координаты на плоскости. Уравнения прямой и окружности в координатах, пересечение окружностей и прямых. Метод координат и его применение. Правильные многоугольники. Длина окружности. Градусная и радианная мера угла, вычисление длин дуг окружностей. Площадь круга, сектора, сегмента. Движения плоскости и внутренние симметрии фигур (элементарные представления). Параллельный перенос. Поворот. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ: мотивация к обучению математике и целенаправленной познавательной деятельности; повышение уровня своей компетентности через практическую деятельность, требующую математических знаний, в том числе умение учиться у других людей; способность осознавать стрессовую ситуацию, быть готовым действовать в отсутствие гарантий успеха; способность обучающихся с ЗПР к осознанию своих дефицитов и проявление стремления к их преодолению; способность к саморазвитию, умение ставить достижимые цели; умение различать учебные ситуации, в которых можно действовать самостоятельно, и ситуации, где следует воспользоваться справочной информацией или другими вспомогательными средствами; способность переносить полученные в ходе обучения знания в актуальную ситуацию (при решении житейских задач, требующих математических знаний); способность ориентироваться в требованиях и правилах проведения промежуточной и итоговой аттестации; овладение основами финансовой грамотности. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Овладение универсальными учебными познавательными действиями: устанавливать причинно-следственные связи в ходе усвоения математического материала; выявлять дефицит данных, необходимых для решения поставленной задачи; с помощью учителя выбирать способ решения математической задачи (сравнивать возможные варианты решения); применять и преобразовывать знаки и символы в ходе решения математических задач; устанавливать искомое и данное при решении математической задачи; понимать и интерпретировать информацию различных видов и форм представления; иллюстрировать решаемые задачи графическими схемами; эффективно запоминать и систематизировать информацию. понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации. Овладение универсальными учебными коммуникативными действиями: организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками в процессе решения задач; взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учѐта интересов; слушать партнѐра; формулировать, аргументировать и отстаивать своѐ мнение; прогнозировать возникновение конфликтов при наличии разных точек зрения и разрешать конфликты на основе учѐта интересов и позиций всех участников; аргументировать свою позицию и координировать еѐ с позициями партнѐров в сотрудничестве при выработке общего решения в совместной деятельности; выполнять свою часть работы, достигать качественного результата и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт. Овладение универсальными учебными регулятивными действиями: ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. формулировать и удерживать учебную задачу, составлять план и последовательность действий; осуществлять контроль по образцу и вносить необходимые коррективы; контролировать процесс и результат учебной математической деятельности; адекватно оценивать правильность или ошибочность выполнения учебной задачи, еѐ объективную трудность и собственные возможности еѐ решения; сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона. предвидеть трудности, которые могут возникнуть при решении учебной задачи; понимать причины, по которым не был достигнут требуемый результат деятельности, определять позитивные изменения и направления, требующие дальнейшей работы; регулировать способ выражения эмоций. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Результаты освоения учебного предмета «Математика (включая алгебру, геометрию, вероятность и статистику)», распределенные по годам обучения, формулируются по принципу добавления новых результатов от года к году, уже названные в предыдущих годах позиции, как правило, дословно не повторяются, но учитываются (результаты очередного года по умолчанию включают результаты предыдущих лет). ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ РАБОЧЕЙ ПРОГРАММЫ КУРСА «ГЕОМЕТРИЯ» (ПО ГОДАМ ОБУЧЕНИЯ) Освоение учебного курса «Геометрия» на уровне основного общего образования должно обеспечивать достижение следующих предметных образовательных результатов: 7 КЛАСС Распознавать изученные геометрические фигуры, определять их взаимное расположение, изображать геометрические фигуры; выполнять чертежи по условию задачи. Измерять линейные и угловые величины. Решать задачи на вычисление длин отрезков и величин углов. Делать грубую оценку линейных и угловых величин предметов в реальной жизни, размеров природных объектов. Различать размеры этих объектов по порядку величины. Строить чертежи к геометрическим задачам (с использованием смысловой опоры: наводящие вопросы и/или алгоритма учебных действий). Пользоваться признаками равенства треугольников, использовать признаки и свойства равнобедренных треугольников при решении задач. Проводить доказательства несложных геометрических теорем. Пользоваться признаками равенства прямоугольных треугольников, свойством медианы, проведѐнной к гипотенузе прямоугольного треугольника, в решении геометрических задач (с использованием зрительной наглядности и/или вербальной опоры). Определять параллельность прямых с помощью углов, которые образует с ними секущая. Определять параллельность прямых с помощью равенства расстояний от точек одной прямой до точек другой прямой. Решать задачи на клетчатой бумаге. Проводить вычисления и находить числовые и буквенные значения углов в геометрических задачах с использованием суммы углов треугольников и многоугольников, свойств углов, образованных при пересечении двух параллельных прямых секущей. Решать практические задачи на нахождение углов. Иметь представление о понятие геометрического места точек. Формулировать определения окружности и круга, хорды и диаметра окружности, пользоваться их свойствами. Уметь применять эти свойства при решении задач. Ориентироваться в понятиях: описанная около треугольника окружность, центр описанной окружности. Оперировать на базовом уровне фактами о том, что биссектрисы углов треугольника пересекаются в одной точке, и о том, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ориентироваться в понятиях и оперировать на базовом уровне: касательная к окружности, теорема о перпендикулярности касательной и радиуса, проведѐнного к точке касания. Иметь представление о простейших геометрических неравенств, их практическом смысле. Проводить основные геометрические построения с помощью циркуля и линейки. 8 КЛАСС Распознавать основные виды четырѐхугольников, их элементы, пользоваться их свойствами при решении геометрических задач. Ориентироваться в понятии – точки пересечения медиан треугольника (центра масс) в решении задач. Владеть понятием средней линии треугольника и трапеции, применять их свойства при решении простейших геометрических задач. Иметь представление о теореме Фалеса и теореме о пропорциональных отрезках, применять их для решения практических задач (с опорой на зрительную наглядность). Применять признаки подобия треугольников в решении несложных геометрических задач. Пользоваться теоремой Пифагора для решения геометрических и практических задач. Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятиями для решения практических задач (при необходимости с опорой на алгоритм правила). Вычислять (различными способами) (с опорой на справочную информацию) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практических задачах. Владеть понятиями вписанного и центрального угла, использовать теоремы о вписанных углах, углах между хордами (секущими) и угле между касательной и хордой при решении простейших геометрических задач. Владеть понятием описанного четырѐхугольника, применять свойства описанного четырѐхугольника при решении простейших задач. Применять полученные знания на практике – строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрии (пользуясь, где необходимо, калькулятором). 9 КЛАСС Знать тригонометрические функции острых углов, находить с их помощью различные элементы прямоугольного треугольника («решение прямоугольных треугольников»). Находить (с помощью калькулятора) длины и углы для нетабличных значений. Пользоваться формулами приведения и основным тригонометрическим тождеством для нахождения соотношений между тригонометрическими величинами (с опорой на справочную информацию). Использовать теоремы синусов и косинусов для нахождения различных элементов треугольника («решение треугольников»), применять их при решении простейших геометрических задач. Владеть понятиями преобразования подобия, соответственных элементов подобных фигур. Пользоваться свойствами подобия произвольных фигур, уметь вычислять длины и находить углы у подобных фигур (по алгоритму учебных действий). Применять свойства подобия в практических задачах. Уметь приводить примеры подобных фигур в окружающем мире. Пользоваться теоремами (по визуальной опоре) о произведении отрезков хорд, о произведении отрезков секущих, о квадрате касательной. Пользоваться векторами, понимать их геометрический и физический смысл, применять их в решении геометрических и физических задач. Применять скалярное произведение векторов для нахождения длин и углов. Пользоваться методом координат на плоскости, применять его в решении геометрических и практических задач. Владеть понятиями правильного многоугольника, длины окружности, длины дуги окружности и радианной меры угла, уметь вычислять площадь круга и его частей (с опорой на справочную информацию). Применять полученные умения в практических задачах. Находить оси (или центры) симметрии фигур, применять движения плоскости в простейших случаях. Применять полученные знания на практике – строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрических функций (пользуясь, где необходимо, калькулятором). Тематическое планирование по геометрии, 8 класс № п/п Тема урока Глава V Четырехугольники (14 часов) 1-2 Многоугольник, его элементы и его свойства. Выпуклые и невыпуклые многоугольники 3-8 Параллелограмм и трапеция. Свойства и признаки параллелограмма 9-12 Прямоугольник, ромб, квадрат. Свойства и признаки прямоугольника, ромба, квадрата 13 Решение задач 14 Контрольная работа № 1 по теме «Четырехугольники» Глава VI Площадь (14 часов) 15-16 Понятие о площади плоской фигуры и ее свойства. Измерение площадей. Единицы измерения площадей 17-22 Формулы площади параллелограмма, треугольника, трапеции 23-25 Теорема Пифагора 26-27 Решение задач 28 Контрольная работа № 2 по теме «Площадь» Глава VII Подобные треугольники (19 часов) 29-30 Понятие преобразования. Определение подобных треугольников 31-35 Признаки подобия треугольников 36 Контрольная работа № 3 по теме «Признаки подобия треугольников» 37-43 Применение подобия к доказательству теорем и решению задач 44-46 Тригонометрические функции острого угла в прямоугольном треугольнике. Вычисление элементов треугольников с использованием тригонометрических соотношений 47 Контрольная работа № 4 по теме «Подобные треугольники» Глава VIII Окружность (17 часов) 48-50 Касательная и секущая к окружности, их свойства 51-54 Центральные и вписанные углы Кол-во часов 2 6 4 1 1 2 6 3 2 1 2 6 1 6 3 1 3 4 55-57 58-61 62-63 64 65-68 Четыре замечательные точки треугольника Вписанная и описанная окружности для треугольников, четырехугольников Решение задач Контрольная работа № 5 по теме «Окружность» Повторение. Решение задач (4 часа) 3 4 2 1 Тематическое планирование по геометрии, 9 класс № п/п Тема урока Глава IX. Векторы (8 часов) 1-2 Понятие вектора 3-5 Сложение и вычитание векторов 6-8 Умножение вектора на число. Применение векторов к решению задач Глава X. Метод координат (10 часов) 9-10 Координаты вектора 11-12 Простейшие задачи в координатах. Расстояние между точками. Координаты середины отрезка 13-15 Уравнения фигур: окружности и прямой 16-17 Решение задач 18 Контрольная работа № 1 по теме "Метод координат" Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 часов) 19-21 Синус, косинус, тангенс угла 22-25 Соотношения между сторонами и углами треугольника 26-27 Скалярное произведение векторов 28 Решение задач 29 Контрольная работа № 2 по теме "Соотношения между сторонами и углами треугольника. Скалярное произведение векторов" Глава XII. Длина окружности и площадь круга (12часов) 30-33 Правильные многоугольники Кол-во часов 2 3 3 2 2 3 2 1 3 4 2 1 1 4 34-37 Длина окружности и площадь круга 38-40 Решение задач 41 Контрольная работа № 3 по теме "Длина окружности и площадь круга" Глава XIII. Движения (6 часов) 42-43 Понятие движения 44-45 Параллельный перенос и поворот 46 Решение задач 47 Контрольная работа № 4 по теме "Движения" Глава XIV. Начальные сведения из стереометрии (6 часов) 48-50 Многогранники 4 3 1 51-53 Тела и поверхности вращения 54-55 Об аксиомах планиметрии Повторение. Решение задач (13 часов) 56 Параллельные прямые 57-58 Треугольники 59-60 Четырѐхугольники 61-62 Площади параллелограмма, треугольника, трапеции, ромба, квадрата 63-64 Признаки подобия треугольников 65 Касательная к окружности 66 Центральные и вписанные углы 67-68 Соотношения между сторонами и углами треугольника 3 2 2 2 1 1 3 1 2 2 2 2 1 1 2